The Gromov-Witten Potential of A Point, Hurwitz Numbers, and Hodge Integrals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gromov-witten Potential of a Point, Hurwitz Numbers, and Hodge Integrals

Hurwitz numbers, which count certain covers of the projective line (or, equivalently, factorizations of permutations into transpositions), have been extensively studied for over a century. The Gromov-Witten potential F of a point, the generating series for Hodge integrals on the moduli space of curves, has been a central object of study in Gromov-Witten theory. We define a slightly enriched Gro...

متن کامل

On Hodge Integrals and Hurwitz Numbers

∗ Dept. of Math., University of Stockholm, S-10691, Stockholm, [email protected] † Higher College of Math., Independent University of Moscow, and Institute for System Research RAS, [email protected] ‡ Department of Mathematics, Royal Institute of Technology, S-10044, Stockholm, [email protected] ♮ Dept. of Math. and Dept. of Computer Science, University of Haifa, Haifa 31905, [email protected]...

متن کامل

On Hurwitz Numbers and Hodge Integrals

In this paper we find an explicit formula for the number of topologically different ramified coverings C → CP 1 (C is a compact Riemann surface of genus g) with only one complicated branching point in terms of Hodge integrals over the moduli space of genus g curves with marked points.

متن کامل

Hodge Integrals, Hurwitz Numbers, and Symmetric Groups

Abstract. We prove some combinatorial results related to a formula on Hodge integrals conjectured by Mariño and Vafa. These results play important roles in the proof and applications of this formula by the author jointly with ChiuChu Melissa Liu and Kefeng Liu. We also compare with some related results on Hurwitz numbers and obtain some closed expressions for the generating series of Hurwitz nu...

متن کامل

Hilbert scheme intersection numbers , Hurwitz numbers , and Gromov - Witten invariants

Some connections of the ordinary intersection numbers of the Hilbert scheme of points on surfaces to the Hurwitz numbers for P1 as well as to the relative Gromov-Witten invariants of P1 are established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 2001

ISSN: 0024-6115

DOI: 10.1112/plms/83.3.563